

Harpoon V 1 December 2025 Printing Errata

This errata provides corrections to 1 December 2025 printing of *Harpoon V*. It only provides errata, such as corrections to typographical errors, clarifications, and resolving inconsistencies. It does not include changes or expansions to the rules. These are covered in a separate file called “Change Log” available on our website.

Page 3-10, 3.5 Torpedo Movement. At the end of the first paragraph, change the last sentence “The torpedo then uses the range remaining based on a ratio of range used at the lower speed.” to “See 7.5.7 Dual-Speed Torpedoes.”

Page 4-1, 4.01 Stepped Aircraft Movement. In the fifth paragraph, change “(see 4.5.3 Nap-of-the-Earth Flight and 4.5.4 Flying at Very Low Altitude Over Land)” to “(see 4.5.2 Sea-Skimming Altitude and 4.5.3 Nap-of-the-Earth Flight).”

Page 4-1, 4.2 Speeds. In the bullet point Speed of Sound Limitations, change “...cannot exceed the speed of sound. This is 660 knots at VLow, 655 kts at Low, 650 kts at Medium and 575 knots at High and Very High altitudes.” to “...cannot **fly at** the speed of sound or faster. Their max speeds are 650 knots at VLow and Low, 640 kts at Medium and 570 knots at High and Very High altitudes.”

Page 4-2, 4.5.2 Sea-Skimming Altitude. In the third paragraph, change “Manned aircraft at SSkim altitude are limited to FMP or 600 knots, whichever is less” to “Manned aircraft at SSkim altitude are limited to FMP or **450** knots, whichever is less.”

After the fifth paragraph, add the following sentence: “UAVs cannot fly at SSKim altitude.”

In the example near the bottom of the left column, change “As it nears Sea Dart engagement range, it drops to SSkim altitude and must immediately slow to 600 knots.” to “As it nears Sea Dart engagement range, it drops to SSkim altitude and must immediately slow to **450** knots.”

Page 4-2, 4.5.3 Nap-of-the-Earth Altitude. In the first sentence, delete “and small unmanned aerial vehicles (UAVs).” In the last sentence, change “helicopters and UAVs” to just “helicopters.”

After the first paragraph, add a new sentence: “Unmanned aerial vehicles (UAVs) cannot fly at NOE altitude.”

Add two new paragraphs at the end of the section:

- SAM attacks on NOE altitude targets, even if a missile is otherwise PSSC or SSC, suffer a -4.0 penalty due to higher background clutter. The only exceptions are ground-fired MANPADs, which are looking up, and laser guided missiles (ground or air-launched).

- Gun engagements of NOE targets always have a -3.0 penalty, even if the guns are sea-skimmer capable, because of the higher clutter/interference and stuff getting in the way of the bullets. This also applies to all aircraft guns (including helicopters).

Page 4-2, 4.5.4 Flying at Very Low Altitude. In the first sentence, change “600 knots” to “650 knots.”

Page 4-2, 4.5.5 Flying at Very Low Altitude Over Land. In the second sentence, change “maneuvering to 1) **avoid** striking the ground, and 2) rising above 60 meters into the Low altitude band” to “maneuvering to **avoid** 1) striking the ground, and 2) rising above 60 meters into the Low altitude band.”

In the fourth paragraph, change the sentence “This enables an aircraft to fly at 61-150 meters safely, so while aircraft using TA radar are treated as being at VLow for detection, they are in the Low altitude band for attacks.” to “This enables an aircraft to fly at 61-150 meters safely. While aircraft using TA radar are treated as being at VLow altitude for detection, **they are attacked as being in the Low altitude band.**”

Page 4-7, 4.9 Helicopter Inflight Refueling (HIFR). In the first sentence, change “Western helicopters can refuel from any friendly surface ship” to “Western **and some Chinese** helicopters can refuel from any **aviation-capable** friendly surface ship.”

Page 5-2, 5.2.4 Shipboard Radar Types. In the bullet point for Low-Altitude Search (LAS) radars, change “They only see contacts in the **Low and Medium altitude bands**, but detect anything in the VLow or SSkim/NOE altitude bands normally..” to “They can only see air contacts in the **Medium altitude band and below**, but detect anything in the VLow or SSkim/NOE altitude bands normally...”

Page 5-3, 5.2.5 Airborne Radar Types. In the bullet point for Terrain-Following and Terrain-Avoidance Radars, change “allow a plane to fly at Very Low or Low altitude (see 4.5.4) in poor visibility. They will not function in Heavy rain” to “allow a plane to fly at Very Low **or** **Low** altitude (see 4.5.3 and 4.5.5) in poor visibility, but they will not function in Heavy rain.”

Page 5-22, In the example in the third full paragraph, change “Tu-142M” to “Tu-142MK.”

Page 5-23, 5.8 Visual Detection. In last sentence of the second paragraph, change “These are listed in the Visibility Modifiers Table on page 5-25.” to “The modifiers are listed at the bottom of page 5-25.”

Page 5-23, 5.8.2 Sighting from Ships. Change the third sentence from “Then move across the range row to the first column where the detection value is greater than the modified die roll” to “Then move across the range row to the first column **that includes** the modified die roll.”

In the example in the second paragraph, change “75% column” to “51-75% column.”

In the third paragraph, change “The player rolls a 58 and runs across the 23 kyds row until they reach the first column where the detection column value is greater than the die roll, in this case, the 75% column.” to “The player rolls a 58 and runs across the 23 kyds row until they reach the first column where the detection column value **includes** the die roll, in this case, the **51-75%** column.”

Page 5-23, 5.8.5 Periscopes. Change the third paragraph from “If a periscope or single mast is raised for the entire Tactical Turn, add +20% to the D100 roll. If multiple masts are raised, add +20%.” to “If a **snorkel**, periscope, or single mast is raised for the entire Tactical Turn, add +20% to the D100 roll. If multiple masts are raised for **the entire turn**, add +20%.”

Page 5-27, 5.8.7.1 Clouds. Change the example in the right-hand column from:

“Example: A Soviet Be-12 patrol aircraft attempts to spot a US surface action group centered on a *Boston*-class CAG (size class B) in 70% visibility conditions with scattered (25%) cloud cover while searching from Medium altitude. The base range for a size class B ship on the Medium column using the 70% row is 63 kyds, however, the cloud cover reduces the sighting range by half to 31.8 kyds.

The Soviet player must first roll to find a gap in the clouds, and if successful then rolls on the Visual Detection Table, the player gets a 16. Running along the 32.0 kyd row (closest value to 31.8) to the 11-25% column shows that a cruiser can be seen out to 30.5 kyds. If there were different-sized class ships in company with the cruisers, the Soviet player must apply the same die roll result to the other ships in the formation. Destroyers (size class C) have a sighting range of 55 kyds (C-D Med column), cut in half to 27.5 kyds, applying the same die roll on the 28.0 kyd row (round to the closest row value) reveals that smaller ships could be seen out to 26.5 kyds.”

to:

Example: A Soviet Be-12 patrol aircraft attempts to spot a US surface action group centered on a *Boston*-class CAG (size class B) in 70% visibility conditions with scattered (25%) cloud cover while searching from Medium altitude. The base range for a size class B ship on the Medium column using the 70% row is 63 kyds, however, the cloud cover reduces the sighting range by half to **31.5** kyds.

The Soviet player must first roll to find a gap in the clouds, and if successful then rolls on the Visual Detection Table, the player gets a 16. Running along the **31.0** kyd row (**rounding down from 31.5**) to the 11-25% column shows that a cruiser can be seen out to **29.5** kyds. If there were different-sized class ships in company with the **cruiser**, the Soviet player must apply the same die roll result to the other ships in the formation. Destroyers (size class C) have a **base** range of 55 kyds (C-D Med column), cut in half to 27.5 kyds, applying the same die roll on the **27.0** kyd row (**round down**) reveals that smaller ships could be seen out to **25.5** kyds.

Page 5-28, 5.5.8 Firing Starshells. In the right-hand column, after the paragraph that ends with "...illuminated or silhouette mofier," add a new one-paragraph sentence: "**Other ships near the firing vessel may be able to take advantage of the starshell's effects.**"

Pages 5-28 and 5-29: The optional rule for Identifying Visual Contacts has been revised:

5.8.9 Identifying Visual Contacts (*optional rule*). In normal play, ships that have been spotted visually are immediately identified by class. In reality, and especially in the heat of battle, ships were often misidentified by class, by type, and even by nationality.

If the players want to get more realistic results from their visual detection, then when a ship is spotted, roll D10 using the die roll that was used for the detection to find a modifier:

Identification Modifiers

Prob. of Det. 1-10% 11-25% 26-50% 51-75% 76-100%

-3 -2 -1 0 +1

For close contacts (less than 4 nmi/8 kyds) in good visibility (60% or better) +2

Environment Modifiers

Visibility 40% or less -2

Visibility 20% or less -3

(Ignore these if using night vision sensors, e.g., LLLTV,
EO/IR in clear weather)

Contact Illuminated -1 (Night only)

Only one of the environment modifiers can be applied. If a contact is illuminated and visibility is $\leq 20\%$ at night, then the illuminated modifier takes priority. A target has to be illuminated at night or detected by EO/IR to get the nationality and class identification results.

Hull Up or Down

If most of the ship is over the horizon, “hull down,” it is very difficult to determine the exact class. The best one can hope for is the ship’s size, type, and if you’re lucky, nationality. Once the superstructure and some of the hull are above the horizon, the ship is “hull up,” and classifying gets a little easier.

A contact is hull up if the range from the detecting platform is equal to, or less than, the horizon range as listed in the 100% Sighting Range table. So, for a C-size vessel, the visible horizon is 17.0 kyds. Any contact that is 17.0 kyds or less from this ship would be considered “hull up.”

Visual Classification Table

<u>D10</u>	<u>Hull Down</u>	<u>Hull Up</u>
1	Ship	Ship
2	Ship	Ship
3	Ship	Size
4	Ship	Size
5	Size	S T
6	Size	S T
7	S T	S T N
8	S T	S T N
9	S T N	S T C N
10	S T N	S T C N

Ship: There is a ship there.

Size (S): Large, Medium, Small, Very Small

Type (T): CV, BB, CG, DD, Merchant

Class (C): Individual ship class

Nationality (N): US, Russian, German, French, etc.

Note: Some classes of ship are used by more than one country, e.g., the British-built Type 42 destroyers used by Argentina during the Falklands War.

Example: A C-size destroyer detected a ship in the previous turn's Detection Phase. The target is B-sized, at a range of 16.2 kyds, in 60% visibility. Because the range is less than 17.0 kyds (C-size horizon), the contact is hull up.

The D100 roll to spot the ship was 45.

The identification modifier is -1 (26 - 50%)

There are no environmental modifiers

Rolling D10, the destroyer's player gets a 5, modified to 4. The results from the hull up column indicates that the player knows the contact is a ship, but nothing more.

Page 6-2, 6.3 Fire Control Solutions. In the second paragraph, in the second sentence, delete "ASW projectiles." ASW projectiles can only be fired in the planned fire phase.

Page 7-1, 7.4.2 Passive Guidance Methods. In the second paragraph of the Electro-Optic Homing (EO) bullet point, change "50% visibility" to "40% visibility."

(Page 7-2, continuation of 7.4.2 Passive Guidance Methods.)

Change the Home on Jam bullet point to read: "The missile can home in on a jamming source. This feature is used by ASCMs as an electronic counter-countermeasure to a ship's jamming and is factored into the seeker's generation rating. Air-to-air missiles with this feature will have it listed in the Remarks and it must be selected by the player before launch. An AAM using HOJ mode has its ATA rating halved, but is not affected by defensive countermeasures or decoys."

In the Infrared Homing bullet point, add a new sentence at the end of the last paragraph ("All IR-homing missiles..."): They are affected by precipitation as any other infrared sensor. The Precipitation modifiers on pg. 5-20 apply to infrared seekers as well.

Page 7-2, 7.4.4 Active Radar Guidance. Change the section to read:

7.4.4 Active Radar Guidance. (ARH or TARH) The missile has its own radar, and does not need any guidance from another unit. Radar seekers suffer from the same clutter effects as other radars and are particularly sensitive to land and rain clutter. If sea state, land, or rain clutter is within a seeker's range, use the Clutter Effects on Range table (pg. 5-5) to determine the reduction in the radar's acquisition range. Use the seeker generation minus two (-2) to get the equivalent radar generation clutter resistance. For example, a 3rd Gen TARH seeker has the clutter resistance of a First-Generation radar; a 4th Gen TARH seeker would have the clutter resistance of a Second-Generation radar.

One variety of active radar is millimeter wave radar (MMWH or TMMWH), which has very high resolution but also very short acquisition ranges. MMW seekers have an acquisition range of 4 nmi (3rd Gen) or 5 nmi (4th Gen) and are unaffected by land or sea state clutter. Rain clutter, however, is still a problem and a MMW seeker will have its range halved in Moderate Rain and unusable in Heavy and Torrential Rain.

Page 7-2 and 7-3, Section 7.4.7 Terminal Guidance. Before the table listing Antiship Missile Seeker Acquisition Ranges, add a sentence: “If a missile seeker has more than one type of terminal guidance, e.g., TARH & TIRH, use the TARH or TSARH component range.

Page 7-3, 7.4.8 Special Guidance Features. Delete the Multichannel guidance bullet point.

In the Popup bullet, change “It is treated as a maneuvering target, but ...” to “**It gets the terminal maneuver modifier**, but ...”

Page 7-5, (Torpedo) Acquisition Ranges, in the first bullet point, for being cross-Layer, change “(see 7.5.2)” to “This halves the acquisition range.”

Page 7-5, 7.5.7 Dual-Speed Torpedoes. In the first paragraph, change the sentence “Range used at a particular speed is based on a ratio of the range **used** divided by the maximum range for the particular speed” to “Range used at a particular speed is based on a ratio of the **unused** range divided by the maximum range for the particular speed.”

Page 8-8, SAM & AAM Missile Attacks table. In the Target Modifiers section, after the Missile Terminal Maneuvers line, add
“NOE Altitude (except MANPADS, SALH guid.) -4”

Change the Sea-Skimming Capable? section to

Sea-Skimming Altitude

Full Capability (min altitude SSkim) 0

Partial Capability (min altitude PSSkim) -2

Not Capable (min altitude VLow) -4

Page 8-9, Antiair Gun Modifiers to AA Strength table. In the Target Altitude section, change the first line (SSkim/NOE) to:

NOE altitude -3

SSkim -3 (if gun is not SSC)

Page 8-12, Gunfire Hit Chance modifiers. In the section on Visibility/Environmental Modifiers, on the line starting “Target is illuminated...” add “or missile launch” at the end of the line.

Page 9-1, 9.1 Aircraft Maneuver Ratings. Change first paragraph, from:

All aircraft have two Maneuver Ratings, e.g., “3.0/1.5.” The first is used when the aircraft is lightly loaded or unloaded (carrying less than 80% of its maximum payload). The second is used when the aircraft is carrying 80% or more of its maximum payload.

to:

All aircraft have two Maneuver Ratings, e.g., “3.0/1.5.” The first is used when the aircraft is lightly loaded or unloaded (carrying less than **50%** of its maximum payload). The second is used when the aircraft is carrying **50%** or more of its maximum payload.

Page 9-7, Section 9.6.8 Resolving Guided Weapon Attacks. Change the third sentence in the first paragraph from “All the weapons in Annex H2 have their attacks resolved on the Precision-Guided Munitions Attack table.” to “Air-launched guided munitions have their attacks resolved on the Precision-Guided Munitions Attack table, except that attacks against ships by TARH, TSARH, or TIRH/TIIRH seekers should use the Antiship Missile Seeker Acquisition Ranges on page 7-3, and the Antiship Missile Attack Table on page 8-15.”

Page 9-8, Satellite Navigation (SATNAV) bullet point. In the third paragraph, replace “..., although not from VLow altitude.” with “or higher.”

Page 9-8, 9.6.9 Resolving Strafing Attacks. In the second paragraph, change the first sentence from “To strafe a ship or land target, a plane must fly directly over it at Low altitude.” to “To strafe a ship or land target, a plane must fly directly over it at Low altitude **or less**.”

Page 14-3, Light Weapons Critical Hit Table. On the last line, change “57 – 65mm” to “57 – 60mm.”

Thanks to Jose Luis Alonso, Chang Lei, David Jurgen, Joaquín Mejía, and Juhan van Zyl.